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Abstract

The study of symmetry of a fold has so far been limited to a qualitative distinction between symmetrical or asymmetrical
folds. There exists no satisfactory scheme of quantitative de®nition of the degree of symmetry or asymmetry of a fold. The

present paper attempts to address this problem by proposing a classi®cation of folds based on a concept of `degree of
asymmetry' deduced from Fourier coe�cients de®ning the shape and size of the two limbs of the fold. # 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Several de®nitions of symmetric folds have been
given in the geological literature. The most comprehen-
sive one however, has been given by Ramsay (1967, p.
357). According to this ``complete de®nition of sym-
metric folds . . .the axial surface must be the right bisec-
tor of a line drawn between two adjacent in¯exion points
and this bisector must divide the fold into two identical
(and mirror image) parts.'' This de®nition groups all
folds into two categories, viz. symmetric folds and
asymmetric folds. In nature however, perfect sym-
metric folds are rare and thus a quantitative classi®-
cation of folds symmetry would have a greater
practical application than just calling them symmetric
or asymmetric. Therefore, in this paper we propose a
method of quantifying the asymmetry of a folded sur-
face between two consecutive in¯exion points and
measure it in the form of degree of asymmetry using
Fourier analysis of fold pro®les.

The use of Fourier series for the study of folds is
not new. It was suggested by Norris (1963) and di�er-
ent methods and applications have been subsequently
described, for example, by Harbaugh and Preston
(1965), Whitten (1966), Chapple (1968), Stabler (1968),

Hudleston (1973), Singh and Gairola (1992) and
Srivastava and Gairola (1997).

A Fourier series is an in®nite series of trigonometric
terms. Because of the periodicity of trigonometric
functions, this series is useful in the investigation of
several periodic physical phenomena including folds.
The Fourier series can be represented by:

a0
2
�
X1
n�1
�an cos�nx� � bn sin�nx�� �1�

where an and bn are constants, n is an integer and x is
a variable with value between 0 and p.

For a quarter wavelength unit of a fold, all cosine
terms, even number terms and the constant (a0) are
zero (Stabler, 1968) and the e�ective Fourier series
thus becomes:

X1
n�1

bn sin�nx� �2�

where n is an odd integer. This series represents a gen-
eral curve which will describe any fold shape between
a point of zero curvature (in¯exion point) and the
point of maximum curvature (hinge point).

The evaluation of the coe�cients (bn ) of the Fourier
series has been dealt with by several workers.
However, we propose the use of the method proposed
by Stabler (1968). Singh and Gairola (1992) have
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suggested that for elimination of scale from measure-
ments proposed by Stabler (1968), the measured Dn

values must be corrected by multiplying the measured
lengths by a factor of p/2W; W being the length of
quarter wave base.

According to this method a line from the in¯exion

point is drawn normal to the trace of the axial surface
(Fig. 1) and its length (W ) measured. The distance of
the fold pro®le from three equally spaced points (Fig.
1) is also measured (D1, D2 and D3). The scale-cor-
rected values of these distances (Y1, Y2 and Y3) can
now be obtained by the expression:

Fig. 1. Measurement of data for Fourier analysis.

Fig. 2. Measurement of the degree of asymmetry. Points A and B represent the two limbs of a fold on the b1 vs b3 graph. The angle va1 ÿ a2v
represents the shape di�erence between the two limbs.
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Yn � Dn
p
2W

�3�

where n � 1,2,3. Stabler (1968) has suggested a very
simple expression for evaluation of the ®rst two odd
sine coe�cients of the Fourier series as:

b1 � Y3 � Y1

3
� Y2

2 sin 608
�4�

b3 � 2Y1 � Y3

3
� 1

2 sin 608
: �5�

As shown above, Fourier coe�cients provide a
method for quantifying the shape of a folded surface.
Hudleston (1973) has used this principle to classify
folds into six categories of ideal styles (A±F) based on
their b3/b1 ratio. He has also suggested that asymmetry
of folds may be evaluated by comparison of coe�-
cients of the two halves of a fold. In the present paper,
the information from the b3 vs b1 graph of Hudleston
(1973) has been used to de®ne quantitatively the asym-
metry of a fold.

2. Principle

The shape of quarter wave sector of a folded surface
can be represented by a point on the b1 vs b3 graph.
Thus the left and right limbs of a single folded surface
can be represented by two speci®c points (Hudleston,
1973, ®g. 9). The relative position of these two points
on the b3/b1 graph will represent the di�erence in geo-
metry of the two surfaces (Fig. 2). If the two points
have identical b1 and b3 co-ordinates the limbs would
have identical shape and size and the fold they rep-
resent is a symmetrical fold. However, if the two
points are separate but lie along the same line joining
them to the origin, the two limbs will have the same
shape but di�erent size (amplitude). The degree of
asymmetry of a folded surface, from one in¯exion
point to another, is thus a function of the distance
between the two points (d ) representing the two limbs
on the b1 vs b3 graph (A and B ) from the origin and
the angle between the lines va2 ÿ a1v joining these
points to the origin (Fig. 2).

Fig. 2 shows two points A and B with b1 and b3 co-
ordinates as (b1A, b3A ) and (b1B, b3B ), respectively.
These two points form a triangle OAB with the origin.
Lengths of the lines OA (=a ) and OB (=b ) can be
given by:

a �
��������������������������������
�b1A�2 � �b3A�2

q
�6�

b �
���������������������������������
�b1B �2 � �b3B �2

q
: �7�

The distance (d ) between the points A and B is given
by:

d �
������������������������������������������������������������
�b1Aÿ b1B�2 � �b3Aÿ b3B �2

q
: �8�

The di�erence in size (amplitude) of the two limbs is
represented by their distance from the origin. A stan-
dardised measure of the di�erence in the amplitude of
the two limbs can thus be de®ned as:

Dsize �
����da ÿ d

b

����: �9�

The angles that the lines OA and OB make with the b3
axis (a1 and a2, respectively in Fig. 2) can be given as:

a1 � tanÿ1
�
b1A

b3A

�
�10�

a2 � tanÿ1
�
b1B

b3B

�
: �11�

The di�erence in shape of the two limbs is represented
as the angle between the lines joining them to the ori-
gin. The shape component (Dshape) can thus be de®ned
as:

Dshape � va1 ÿ a2v: �12�
As de®ned earlier, the degree of asymmetry (DA) of

a folded surface is a function of two variables. It is
therefore being de®ned as the sum of these com-
ponents, that is, the shape component (Dshape) and the
size component (Dsize):

DA � Dshape � Dsize: �13�

Based on the above derivation, we propose to de®ne
asymmetric folds as folds where the shapes of the
quarter wave sectors (from hinge to in¯exion point) on
either side of the fold are not mirror images of each
other and/or the amplitude of the quarter wave on
both the limbs of the folded surface are not equal. We
propose to measure this asymmetry as the sum of the
shape di�erence between the limbs (Dshape) and the
standardised amplitude di�erence between the limbs
(Dsize) as represented by the Fourier coe�cients. That

Table 1

Fold classi®cation based on pro®le symmetry

DA=0 Symmetrical

0<DAR3 Sub-symmetrical

3<DAR6 Slightly asymmetrical

6<DAR9 Moderately asymmetrical

9<DAR12 Highly asymmetrical

12<DA Extremely asymmetrical
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is, the di�erences in shape and size of the limbs a�ect
the asymmetry equally. We propose to de®ne asymme-
try of a folded surface as the di�erence in size and
shape of two limbs of a fold between two consecutive
in¯exion points.

Based on the degree of asymmetry, folds can be
classi®ed into groups having a comparable range of
asymmetry. We propose to classify folds into the fol-
lowing six categories (Table 1).

3. Example

To assess the application of this method, it was used
to determine the asymmetry of di�erent categories of
folded surfaces. The method was applied to ideal fold
shapes, experimentally developed parallel folds as well
as natural similar folds. The latter two classes have
been chosen because they represent two fundamentally
di�erent fold geometries.

3.1. Ideal fold forms

Based on his visual harmonic analysis, Hudleston
(1973) has described 30 ideal fold forms characterised
by their shape and amplitude. He described six cat-
egories of shape (A, B, C, D, E and F) and ®ve cat-
egories of amplitude (1, 2, 3, 4 and 5). We have
calculated the degree of asymmetry of hypothetical
folds that would result by combining these ideal fold
forms (Fig. 3). Hypothetical folds were constructed by
combining folds of shape categories F (chevron), D
(parabola) and A (box) and amplitude categories 1, 2,
3, 4 and 5. Folds having the same shape but di�erent
amplitudes were combined to separate out the e�ect of
amplitude (size) on asymmetry while folds having iden-
tical amplitude but di�erent shape were combined to
study the e�ect of shape on the asymmetry. The folds
resulting from these combinations are shown in Fig. 3
along with their DA values. It is clear from this ®gure
that the asymmetry due to di�erence in limb size

Fig. 3. Asymmetry variation in hypothetical folds resulting from combination of ideal fold forms of Hudleston (1973). First two columns

represent folds generated by combining folds of identical shape category but belonging to di�erent categories of amplitude. The third column

contains folds generated from combination of folds having the same amplitude but belonging to di�erent categories of shape.
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(resulting from combination of extreme size classes
F1±F5 and D1±D5) is similar to the asymmetry due to
di�erence in limb shape (resulting from combination
of extreme shape classes A1±F1 and A3±F3).

3.2. Experimentally developed parallel folds

The method was applied to experimentally devel-
oped folds in plasticine by Srivastava and Gairola

Fig. 4. (a) Experimentally developed fold shown in ®g. 4(c) of Srivastava and Gairola (1988). The outermost surface of the almost parallel fold

has not been selected because the left in¯exion point can not be reliably marked. Below surface 12 of the fold, a set of layers oriented oblique to

the folded layers occur. The interference of boundary conditions between these two di�erently oriented layers may be the reason for the di�erent

asymmtetry conditions in surfaces 11 and 12. (b) A natural similar fold in quartzite used here for asymmetry estimation.
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(1988). The fold in ®g. 4(c) of their work has been
selected for the present study (Fig. 4a). It was observed
that the asymmetry shows a slight increase from outer
to the inner arcs of the fold (Fig. 5) with the exception
of the innermost layer that shows lower asymmetry,
perhaps due to interference of boundary conditions
with adjoining oblique layers. The asymmetry also
shows a regular pattern of increase and decrease. The
Dsize component generally increases toward the inner
arc.

3.3. Naturally occurring similar folds

Asymmetry determination was carried out on
natural similar folds (Fig. 4b) developed in quartzite.
In contrast to the analysis of parallel folds, it was
observed that the asymmetry of layers does not follow
an increasing trend towards inner arc (Fig. 6). The DA

values however do show a cyclic pattern of increase
and decrease especially in the Dshape component with
the Dsize component varying only within narrow limits
(Fig. 6).

4. Discussion

The DA value has been de®ned as a sum of two vari-
ables (Dshape and Dsize). This scheme gives equal weight
to changes in size and shape in determining the asym-
metry. In other words the degree of asymmetry of a
fold is equally sensitive to changes in shape and size of
the limbs. However, signi®cantly di�erent combi-

nations of shape and size may produce the same asym-
metry.

In Fig. 5 the degree of asymmetry progressively
increases towards the inner arc of the fold. This may
perhaps be attributed to the fold having a similar
shape and a changing amplitude across the layers
which is a property of parallel folds. However from
the results we may add that this change in amplitude
too is not constant but increases towards inner arc. In
similar folds the change in amplitude is almost con-
stant throughout the fold (Fig. 6) but the shape
changes sharply across the foldÐa property of similar
folds.

Twiss (1988) has studied the geometrical properties
of folds and has given a detailed classi®cation of per-
fect symmetric folds using the style elements of blunt-
ness, folding angle and aspect ratioÐin half
wavelength of a fold, i.e. between two consecutive
in¯exion points. This method can be extended to cer-
tain categories of imperfect symmetric folds and asym-
metric folds and is very useful in understanding the
geometry of folds and style of folding. However, appli-
cation of this model to asymmetric folds requires
additional geometrical construction and evaluation of
more parameters `` . . .asymmetric folds thus require
twice the number of parameters to de®ne their geometry
as symmetric folds, and because of this additional com-
plexity less attention is generally given to the study of
the geometry of asymmetric folds'' (Twiss, 1988, p.
620). The model being proposed in the present paper
has addressed this particular problem of studying the
asymmetric folds. The present model treats a quarter

Fig. 6. DA variation across a natural similar fold shown in Fig. 4(b). Arrow denotes the general trend of DA.
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Table 2

a values corresponding to Hudleston's (1973) fold classes

a1 or a2 (in degrees) Fold style

71.6 Box fold

80.6 Semi-ellipse fold

87.9 Parabola fold

90.0 Sine wave fold

96.3 Chevron fold

wave sector of a foldÐfrom in¯exion point to hingeÐ
as one fold unit (as opposed to half wave sector of
Twiss, 1988) and mathematically compares the par-
ameters of shape and size from two distinct fold units.
Since comparison is completely mathematical the
model is not prone to subjectivity. However, since the
method is based on the Fourier technique, all its pro-
visions apply to the present model as well.

The quantitative measure of the asymmetry of a fold
is a new technique and may ®nd application in several
geological studies. Some of the possible applications
are mentioned below:

. The DA value provides a useful method of math-
ematically comparing the geometry of two folded
surfaces. The concept may be of use in any study
involving comparison of folds.

. Ramsay (1958, 1962, 1967) and Turner and Weiss
(1963) have used the symbol `M' for symmetric fold
and `S' and `Z' to represent asymmetric folds on
regional geological maps. It has been argued that
the fold symmetry in a mesoscopic fold would vary
as a function of the distance of the fold from the
regional fold hinge zone. We propose to further
re®ne this method by incorporating DA values on
such regional maps and presenting the asymmetry
by symbols like S2.4 or Z3.2 which would indicate
the vergence as well as amount of asymmetry. Such
maps may be of help in structural studies of the

area and may help in accurate demarcation of
elements of regional folds.

. Quantitative representation of fold style may also be
mapped along with the DA which is partly a
measure of style di�erence between the two limbs of
a fold. The values of a1 and a2 are in fact the

measure of the fold style. Using the fold classi®-
cation given in table 1 of Hudleston (1973) we
can give the fold style as a function of a1 or a2
(Table 2).

However, we do recommend the more detailed
classi®cation of fold styles derived from the fold
classi®cation scheme given by Singh and Gairola
(1992). This scheme is also derived from Hudleston's
(1973) classi®cation and the a values corresponding
to di�erent fold styles has been calculated. For
a<67:88 the fold will be a multiple fold and for a >
99:88 the fold will be a cuspate fold. All other cat-
egories will have a within this range (i.e. 67.8±99.88).
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Appendix

For a rapid calculation of the degree of asymmetry,
from b1, b3 and W data for both the fold limbs, a com-
puter program has been developed. The program has
been written in MS-QBASIC using MS-DOS 6.22 and
a 80486 based PC (to obtain a copy of the program
send a blank 3.50 ¯oppy disk). Data for the program
has to be supplied in an ASCII text ®le having the
data format:

The surface names may be alphanumeric while all the
other variables are double precision numeric values.
The program prompts for output devices from the user
and directs the output to the requested device (console,
printer or ®le). The printer device defaults to lpt1. The
®le device prompts for a ®le name and appends the
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output at the end of the requested ®le in ASCII text format without a�ecting any existing data in the ®le.
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